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Abstract: Image reconstruction in the most model-based biophotonic imaging modalities 
essentially poses an ill-posed nonlinear inverse problem, which has been effectively tackled 
in the diffusion-approximation-satisfied scenarios such as diffuse optical tomography. 
Nevertheless, a nonlinear implementation in high-resolution laminar optical tomography 
(LOT) is normally computationally-costly due to its strong dependency on a dense source-
detector configuration and a physically-rigorous photon-transport model. To circumvent the 
adversity, we herein propose a practical nonlinear LOT approach to the absorption 
reconstruction. The scheme takes advantage of the numerical stability of the singular value 
decomposition (SVD) for the ill-posed linear inversion, and is accelerated by adopting an 
explicitly recursive strategy for the time-consuming repeated SVD inversion, which is based 
on a scaled expression of the sensitivity matrix. Experiments demonstrate that the proposed 
methodology can perform as well as the traditional nonlinear one, while the computation time 
of the former is merely 26.27% of the later on average. 
© 2017 Optical Society of America 
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1. Introduction 
Functional mesoscopic optical tomography, such as the laminar optical tomography (LOT) or 
the quantitative optoacoustic mesoscopy, bridges the gap of spatial-resolution and 
penetration-depth between microscopic and macroscopic imaging, and thus is emerging as a 
powerful clinical tool to detect chromophores (hemoglobin, melanin, water, etc.) and 
fluorochromes (endogenous fluorophores and exogenous agents) in superficial tissues [1,2]. 
In addition, miniaturized mesoscopic instrument has the potential of performing endoscopic 
imaging [3,4]. 

As a model-based biophotonic imaging technique, LOT is an adaptation of the epi-
illumination diffuse optical tomography (DOT) principle to mesoscopic-scale applications 
[1]. Image reconstruction in LOT is inherently an ill-posed nonlinear inverse problem. 
Although the Newton-type iteration has been widely developed as a canonical method for 
DOT nonlinear reconstruction, and greatly facilitated by the adoption of the diffusion 
approximation (DA) model, its implementation in the high-resolution LOT is computationally 
difficult since a dense sampling and a physically-rigorous photon-transport model are 
desirable in this scenario [5–8]. Take the raster-scanning LOT for instance, to achieve 200-
µm spatial resolution, at least 50 × 50 scanning spots (or source sites) per square centimeter 
are requisite, which normally leads to 2500 forward calculations in each iteration stage and 
pseudo-inversion of a 2500-row sensitivity matrix [1]. As a compromise, LOT generally 
employs a one-step linear reconstruction scheme, where the forward modeling is performed 
merely for a specific scanning spot with the assumed “homogeneous background”, and 
obtained for the rest scanning spots via translational transforms [1,4,6]. However, the linear 
reconstruction has been demonstrated to only accommodate small-perturbation scenarios with 
an accurate enough initial guess of the background [9–11]. 

In order to efficiently perform the nonlinear reconstruction for improved quantitation and 
resolution, efforts have been paid on enhancing both the forward and inverse calculations in 
DOT and can be naturally applied to LOT. Parallel implementation of the photon-migration 
modeling is typical strategy for the forward acceleration, where a combined multicore CPU 
and multistream GPU has been used [12–14]. For the scenarios depending on the delicate 
transport theory, the scaling scheme has been considered to be skillful technique that 
significantly speeds-up the repeated forward predictions through substituting the original re-
modeling process with calibration operations, based on the established scaling relations 
between the perturbed and unperturbed results [15, 16]. By taking advantage of the scaling 
strategy, the forward model in the traditional one-step linear reconstruction for LOT has 
evolved into a recursive computation form for the nonlinear scheme to accommodate 
scenarios with “optically heterogeneous background” [17]. 

More works have been also devoted to improving the large-scale DOT inverse calculation. 
A gradient-optimization based solution has been proposed to circumvent the low-efficient 
inversion of the incurred large-scale and ill-conditioned sensitivity matrix (i.e., the linear 
inversion).The desired unknowns are obtained by using an iterative line minimization, where 
the searching direction is set to be the gradient of the objective function [18, 19]. However, it 
generally takes multiple iterations to reach the minimization. In contrast to the optimization 
strategy, the inverse problem is (piecewisely) linearized in the computationally robust 
perturbation method, i.e., the Newton-Raphson scheme, and the parameters updating is 
achieved through linear inversion [1, 5, 6]. Many approaches have been developed to reach a 
computationally and physically efficient inversion. One most commonly-utilized strategy is to 
reduce the model order. For instance, the adaptive meshing scheme refines meshes only in 
regions of interest to ensure necessary resolution while keeping the reconstruction 
computationally tractable [20, 21]. In view of the great sparsity of sensitivity matrix, 
truncated measurement sensitivity was proposed to perform selective generation only for 
those elements larger than a predefined threshold-value of sensitivity [22, 23]. Another 
typical method that has been demonstrated in the high-density DOT is development of the 

                                                                              Vol. 8, No. 9 | 1 Sep 2017 | BIOMEDICAL OPTICS EXPRESS 4277 



Schwarz-type domain decomposition (DD), to partition the whole domain into several 
overlapped subdomains and perform both the forward and inverse calculations over the 
subdomains in an alternating way [24]. The scheme can be in nature significantly accelerated 
with a combined multi-CPU and GPU parallelization [14]. With the downscaled sensitivity 
matrix, the linear inversion can be more efficiently achieved in a whole-matrix-fashioned 
way, e.g., the Tikhonov regularization or the truncated Singular Value Decomposition (SVD). 

For the ill-posed linear inversion in the Newton-Raphson schemed DOT, SVD has been 
considered a powerful numerical tool, since the threshold of efficient singular value, as a 
significant reference value of regularization parameter, can be practically determined 
according to the systematic signal-to-noise ratio (SNR) [25, 26]. However, calculation of a 
complete SVD for both the singular values and vectors is time-consuming, and typically leads 
to a computational complexity of O(4MN2 + 22M3) and O(4MN2 + 8NM2 + 9M3) for the 
Golub-Reinsch-SVD and R-SVD of a M × N (M≤N) matrix, respectively [27, 28]. As such, 
Yalavarthy et al. proposed a linear iterative reconstruction without iteratively updating the 
sensitivity matrix and its SVD terms, and demonstrated its conditional feasibility and 
superiority to the linear reconstruction [11]. 

In this work, a practical nonlinear LOT scheme for the absorption reconstruction is 
proposed within the framework of the Newton-Raphson linear iteration, where the original set 
of the governing equations is commonly linearized with a Taylor series expansion and 
iteratively solved based on the SVD-based linear inversion. To mitigate the requirement for 
SVD at each iteration, an explicitly recursive SVD version is derived from the scaling nature 
of the sensitivity computation, sharply reducing the overall computation complexity of the 
SVD-based linear inversion to O(NM2 + MN2) ( M N ). The proposed reconstruction 
scheme has been validated numerically and experimentally, and shown to be equivalent to the 
traditional nonlinear one. 

2. Methods 

In the rest of this paper, the element of a matrix or vector ζ  is referred to as ijζ  or iζ , 

respectively; Tζ  denotes the transpose of matrix ζ ; M N×R  represents the set of M-by-N real 

matrices. 

2.1 SVD-based framework for nonlinear inversion 

To mitigate the ill-conditioned nature of the inverse problem, the linearized inversion for 
updating the absorption coefficient at k-th (k>0) iteration is typically regularized with the 
Tikhonov strategy, leading to the following updating equation [1,5,6] 

 ( ) ( )( ) ( ) ( ) ( )( ) ( )
1T T

δ ,k k k k k k
a α

−
 = +  

μ J J I J b  (1) 

where ( )k N
a ∈Rμ  denotes the absorption perturbations at the N meshing voxels; ( )k M NJ ×∈R  

is the sensitivity matrix; the regularization parameter ( )kα  controls the influence of the model 

mismatch, noise and systematic errors on the solutions of ( )k
aμ ; ( )k Mb ∈R  indicates the 

residuals between the boundary measurements Γ  and the model predictions ( )kF , i.e., 
( ) ( )k k= −b FΓ . M N  is generally achievable in LOT reconstruction. To perform a reliable 

regularization, we transform Eq. (1) into the following form of the SVD inversion 

 ( ) ( )
( )

( )( ) ( )
( )( ) ( )T

2
δ ,

k
k k k k

a
k kα

=
+

Λμ V U b
Λ I

 (2) 
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where ( )k M M×∈U R  and ( )k N N×∈V R  are orthonormal matrices containing the left and right 

singular vectors of ( )kJ , respectively, and ( )k M N×∈RΛ  is a diagonal matrix with the non-

negative diagonal elements being the singular values of ( )kJ , i.e., ( ) ( ) ( ) ( )( )T
k k k k=J U VΛ . By 

such an expression, it is now clear to set ( )kα  equal to the lower-bound of the efficient 
singular values, which is practically determined as per the systematic SNR. 

On account of the high complexity of computing SVD, we propose herein to achieve 
( )kU , ( )kΛ  and ( )kV  with an explicitly recursive scheme, respectively. Without loss of 

generality, the recursive expression is formed as 

 ( ) ( ) ( )+1 = + ,k k kΘ δΘ Θ  (3) 

where { , , }Θ ∈ U V Λ . The small enough perturbation ( )
,
k

a nδμ  holds the following 

approximation 

 ( )
( )

( )

( )

( )
( ), ,

, ,
1 1 1 , ,

.
k kM N N

i jk km l
i j a nk k

n m l m l a n

J

J
δ δμ

μ= = =

∂Θ ∂
Θ ≈

∂ ∂
  (4) 

2.2 Recursive SVD scheme for sensitivity matrix 

In view of the photon-migration scaling principle, the forward prediction for the voxelized 

absorption perturbations ( )
,
k

a nδμ  can be iteratively updated as formulated below 

 ( ) ( ) ( ) ( )
, ,1

1

,
k k

m n a n

N
sk k

m m
n

F F e δμ−+

=

= ∏  (5) 

where ( )
,

k
m ns  ( 0 m M< ≤ ) denotes the averaged pathlength of the detected photons inside the 

nth voxel under the mth source-detector configuration [15,16]. For the proof-of-concept 

survey, ( )0
mF  is obtained through solving the delicate radiative transport equation (RTE) with 

the discrete-ordinates-method (DOM). Combing Eq. (5) and the definition formula of the 
measurement sensitivity, we have (Appendix A) 

 ( ) ( ) ( ) ( )
, ,δ1

, ,= .
k k

m n a nsk k
m n m nJ J e μ−+  (6) 

Note that ( ) ( )
, ,/ 0k k

m l a nJ μ∂ ∂ =  in case of l n≠ . Inserting Eq. (6) into Eq. (4), we have 

 ( )
( )

( )
( ),

, ,
1 1 ,

,
kM N

i jk k
i j m nk

m n m n

J
J

δ δ
= =

∂Θ
Θ ≈

∂
  (7) 

where ( ) ( ) ( ) ( )
, ,

, , ( 1)
k k

m n a nsk k
m n m nJ J e δμδ −= − , and ( ) ( )

, ,/k k
i j m nJ∂Θ ∂  is detailed to the following explicit 

expressions [27,28] 
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J

φ
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U
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V φ
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with ( )kφ  and ( )kϕ  being the solution to the following 2 × 2 matrix equation 

 
( ) ( )

( ) ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )
, , ,

, , ,

,
.

,

k k k k k
j i i j m i n j

k k k k k
i j i j m j n i

m n u v

m n u v

φ
ϕ

     Λ Λ
    =  
Λ Λ −          

 (9) 

It is noteworthy that, Eq. (9) becomes ill-conditioned as ( )k
iΛ  is close to ( )k

jΛ , and the 

Tikhonov strategy is used to regularize the linear inversion. Substituting Eqs. (7) and (8) into 
Eq. (3) produces the following matrix-fashioned recursive expressions 

 

( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( )

1

T
1

T
1

,

k k k

k k k k k k

k k k k k k

diag+

+

+


= +


  = ⊗ − ⊗ +   
  = ⊗ − ⊗ +   

Λ Ω Λ

U U ξ Ω η Ω I

V V ξ Ω η Ω I

 (10) 

where the operator “⊗” denotes the Hadamard/Schur product, 

 ( ) ( )( ) ( ) ( )T

,k k k k=Ω U δJ V  (11) 

and 

 ( ) ( ) ( )
( ) 2 ( ) 2 ( ) ( ) ( ) ( ) ( )

, , ( ) ( )( ) 2 ( ) 2 ( ) 2 ( ) ( ) 2

( ) ( ) -2
1 ,

[( ) ( ) ] -4( )

k k k k k k k
i j i jk k i j

i j i j ijk kk k k k k
j ii j i j

α
ξ η

α
′ Λ + Λ + Λ Λ  Λ Λ   = − Δ   ′ Λ ΛΛ + Λ + Λ Λ   

 (12) 

with Δij being the Kronecker delta function, and ( )kα'  the Tikhonov regularization parameter. 
The most expensive step in the recursive calculation is computing Eqs. (10) and (11), making 

the leading order of updating ( )k
aδμ  as O(2M2N + MN2). 

3. Simulative investigations 
The performance of the proposed method is evaluated using the simulated data for a semi-
infinite tissue model at mesoscopic scale. The model contains a stick-like heterogeneity 
target, with only absorption contrast, as shown in Fig. 1. The cross-section area of the 
heterogeneity is 1 × 1mm2. The background optical properties of the model is μa0 = 0.01 
mm−1, μs0 = 2.5 mm−1, and g = 0.85. 100 × 100 raster-scanning spots of 0.15-mm diameter are 
uniformly distributed on the model surface covering a field of view (FOV) of 8.3 × 8.3mm2, 
i.e., the scanning interval is 0.083 mm. There are totally 8 detecting sites corresponding to 
each scanning spot, each with an increment of ~0.24 mm in the source-detector separation 
(SDS). To achieve an imaging depth of ~1.7 mm and also to eliminate the residual specular 
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reflections in practice [1], the maximum and minimum SDSs are set to ~2.19 mm and ~0.25 
mm, respectively. 

 

Fig. 1. Tissue model for generating simulated data. 

The simulated data to the raw measurement are generated by the MC method. To be 
realistic, a Gaussian-type noise is added to obtain a conventionally achievable signal-to-noise 
ratio (SNR) of 30 dB in the LOT measurements [4]. In reconstruction procedure, 100 × 100 
raw measurements for a fixed SDS are decimated into 20 × 20 with a low-pass filter. To 
achieve a mesoscopic resolution of ~200 μm for the reconstruction, the computation domain 
of 8.3 × 8.3 × 3mm3 is discretized into 60 × 60 × 43 cubic voxels. With this meshing scheme, 
no evident numerical error would be observed according to our previous practice. The above 
settings for the downsampling ratio and discretization lead to a large-scale updating equation 
[i.e., Eq. (1)] with a 3200 × 154800 coefficient/sensitivity matrix. The regularization 
parameters in Eq. (1) are set as 0.1, 0.05, and 0.01α =  for target depths being 0.4mm, 0.9mm, 
and 1.2mm, respectively [1]. For a fair comparison, the iteration number of the Newton-
Raphson optimization in all the following reconstructions is set to 50. As an example, only 
the reconstructed Y-Z and X-Y sectional images are illustrated. It is noteworthy that, the Y-Z 
images is an averaged result from x = 0mm to 8.3mm to achieve numerical stabilization. All 
reconstructions were performed on a workstation with a 3.60 GHz CPU (Intel Core i7-3820) 
and a GPU card (Nvidia GeForce GTX 970). 

To evaluate the efficiency and accuracy of the proposed method, we compare the 
reconstructions using the one-step linear (‘linear’ for short), linear iterative, proposed, and 
traditional methods, in terms of computational time, quantitativeness ratio (QR), and full 
width at half-maximum along X-, Y-, or Z- axis (referred to as FWHMax with the subscript 
‘ax’ being ‘x’, ‘y’, or ‘z’). To quantify the performance of position reconstruction, we 

introduce a measure, defined as ax ax ax,real ax,real/γ γ γε = − , with axγ  being the distribution 

centroid along the referred axis of the reconstructed μa image. With the definition, ax 0ε =  

indicates no position error, which, however, is hard to achieve in DOT/LOT due to the 
inherent skin-effect [4, 29]. 
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3.1 Comparisons for model with different target-absorption-contrast 

 

Fig. 2. Reconstructed  images and the corresponding Z-profiles along the white dashed lines 
with the four schemes, for (a) TAC = 2, (b) TAC = 3, and (c) TAC = 5, respectively, with a 
fixed target depth of 0.9mm. The black dotted boxes indicate the original targets. 

The model in Fig. 1 is employed to compare the four reconstructions for different target-
absorption-contrast (TAC). The simulated data are generated for TACs of 2, 3 and 5, i.e., μa = 
0.02, 0.03 and 0.05 mm−1, respectively, and a fixed target depth of 0.9mm. Figure 2 shows the 
reconstructed μa images and the corresponding profiles along the Z-axis (Z-profile) at y = 
4.165mm (indicated by the white dashed lines). Table 1 presents the FWHMz, QR, and zε  of 

the reconstructed target calculated from the images. Furthermore, the computation time per 
iteration taken to evaluate Eq. (1) is also calculated, which is averaged for all the Newton-
Raphson iterations in one reconstruction scheme. The computation time will be fixed in all 
the following experiments, as long as the reconstruction-associated parameters, e.g., 
measurement configuration and discretization scheme, are unchanged. 

Table 1. Comparisons among the reconstructions for three TACs 

Method 
Time 
(s) 

TAC = 2 TAC = 3  TAC = 5 

QR 
(%) 

FWHMz 
(mm) 

εz 
(%) 

 
QR 
(%) 

FWHMz 
(mm) 

εz 
(%) 

 
QR 
(%) 

FWHMz 
(mm) 

εz 
(%) 

Linear \ 54.54 1.78 19.90  43.66 1.59 19.90  36.22 1.49 19.90 
Linear 
iterative 

38.4 86.60 1.50 4.39  69.72 1.38 4.39  58.49 1.32 4.39 

Proposed 84.8 104.42 1.24 1.81  84.07 1.17 4.39  70.48 1.13 4.39 

Traditional 317.3 104.41 1.24 1.81  84.05 1.17 4.39  70.46 1.13 4.39 

It is observed that, the linear reconstruction show the poorest performance, e.g., lower 
QR, larger FWHMz, and more obvious skin-effect. For the linear reconstruction achieved by 
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solving Eq. (1) with k = 1,  aδμ  depends on the regularization parameter, which generally has 

to be changed with the imaging depth [1,4,30]. As a result, the position-related measures and 
QR are hard to be simultaneously optimized through the one-step procedure. For the linear 
iterative scheme, although it spends less computation time than the proposed method dose, it 
has lower QR, larger FWHMz and zε . In general, the linear iterative reconstruction leads to a 

larger solution error in cases where the perturbation is large, e.g., an initial guess is not close 
to the real value [9–11]. However, non-linear approaches allow larger perturbations to be 
adequately modeled by imposing iterative updates on searching direction, i.e., the derivative 

( )
,

k
m nJ  [9]. In comparison to the traditional non-linear one, the proposed nonlinear 

reconstruction shows a similar performance, while taking merely 26.7% computation time. 
Seeing from the reconstructed Y-Z images, the bottom edge of the target is smoothed and 
blurred more severely than the top, which is a common problem inherent in LOT or DOT and 
can be physically ascribed to the increased number of detected photon scatterings with 
deepening target depth [1,4,30]. 

3.2 Comparisons for model with different target depth 

The imaging depth of the four methods is also compared. Figures 3(a) to 3(c) show the 
reconstructed μa images for target depths of 0.4 mm, 0.9 mm, and 1.2 mm, respectively, as 
well as the corresponding Z-profile at y = 4.165 mm, with a fixed TAC of 5, i.e., μa = 0.05 
mm−1. Table 2 shows the corresponding QR, FWHMz and zε  of the reconstructions 

calculated from the images. 
We can see that, for the case of superficial target, e.g., depth = 0.4mm, all the four 

schemes show accurate position-associated reconstructions. With increase of target depth, 
image quality reduces with rising FWHMz and zε . Furthermore, artifacts can be found near 

the surface, as indicated with white arrowheads in Fig. 3(c), which might be attributed to the 
twofold aspects below. On one hand, slight differences between the raster-scanning positions 
in the meshing for forward calculation and those in the simulated data may produce serious 
artifacts [30]. On the other hand, with increase of target depth, the regularization parameter 
extremely reduces, imposing numerical instability on solving Eq. (1) [30]. For a typical LOT, 
the highest measurement sensitivity along Z-axis locates at several mean-free-pathlength 
below incident sites due to the Gaussian shape of snapshotting incident photon-density along 
Z-axis [31]. Consequently, the artifacts shown in Y-Z cross-sections emerge at a small depth. 
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Fig. 3. Reconstructed  images and the corresponding Z-profiles along the white dashed lines 
with the four schemes, for the target depths of (a) 0.4mm, (b) 0.9mm, and (c) 1.2mm, 
respectively. The black dotted boxes indicate the original targets. 

Due to the decreasing measurement sensitivity, the QR reduces in theory with the target 
depth increasing. However, several “exceptions” can be observed in Table 2, since the above 
principle makes sense merely for well-recovered target position, i.e., a reasonably small εz 
herein. In this case, a higher QR with none-zero εz should be worse depending on εz. 
Consequently, it might be more sensible to evaluate the reconstruction quality firstly in terms 
of εz rather than QR. 

Table 2. Comparisons among the reconstructions for different target depths 

Method 

Depth = 0.4mm Depth = 0.9mm Depth = 1.2mm 

QR 
(%) 

FWHMz 
(mm) 

εz 
(%) 

 
QR 
(%) 

FWHMz 
(mm) 

εz 
(%) 

 
QR 
(%) 

FWHMz 
(mm) 

εz 
(%) 

Linear 39.89 1.18 3.10  36.22 1.49 19.90  33.70 1.54 14.97 
Linear 
iterative 

46.49 1.15 3.10  58.49 1.32 4.39  59.86 1.26 8.43 

Proposed 50.74 1.18 0.78  70.48 1.13 4.39  66.39 1.18 8.43 

Traditional 50.74 1.18 0.78  70.46 1.13 4.39  66.38 1.18 8.43 

Since LOT is originally designed to detect blood hemoglobin in epithelial tissue, visible 
excitation is employed to achieve a high target-absorption-contrast (TAC), further reducing 
the maximum imaging depth (typical ~2 mm) [1,4]. To improve target depth localization, 
depth-compensation scheme can be incorporated into the reconstruction process through 
modifying the sensitivity matrix to optimally counterbalance the decay nature of light 
propagation in turbid medium [32]. 
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3.3 Comparisons of noise robustness 

 

Fig. 4. Reconstructed  slices along y = 4.165 mm and the corresponding Z-profiles along the 
white dashed lines, with the four schemes for a fixed target depth of 0.9 mm, when SNRs of 
the simulated data are (a) 10 dB, (b) 20 dB, and (c) 30 dB, respectively. The black dotted lines 
indicate the edges of original targets. 

The noise robustness of the four methods is evaluated using the same model with target depth 
and absorption contrast being 0.9mm and 5, respectively. To intuitively represent the 
influence of the measurement noise to the reconstructions, X-Z cross-sections at y = 4.165mm 
(crossing the target center) are presented in Fig. 4 instead of the averaged Y-Z ones, for the 
SNR of 10, 20 and 30dB, respectively. The last row in Fig. 4 shows the corresponding Z-
profiles along the white dashed lines at y = 4.165 mm in the above images. 

Table 3. Comparisons among the reconstructions for noise robustness 

Method 

SNR = 10dB SNR = 20dB SNR = 30dB 

QR 
(%) 

FWHMz 
(mm) 

εz 
(%) 

 
QR 
(%) 

FWHMz 
(mm) 

εz 
(%) 

 
QR 
(%) 

FWHMz 
(mm) 

εz 
(%) 

Linear 25.73 1.54 14.05  32.88 1.48 13.11  36.17 1.46 12.14 
Linear 
iterative 

38.47 1.34 3.40  49.29 1.32 1.81  53.90 1.22 1.81 

Proposed 52.33 1.14 1.81  65.05 1.13 1.81  72.35 1.06 1.81 

Traditional 52.32 1.14 1.81  65.03 1.13 1.81  72.34 1.06 1.81 

As shown in Fig. 4, the recovered absorption distribution in the target region becomes 
unreasonable with the SNR deceasing due to the statistical instability. For noise-robust 
quantitation, the mean QR, FWHMz and zε  along X-axis are further calculated for the Y-Z 

cross-sections (not shown), and averaged for 10 statistically independent reconstructions in 
Table 3. It can be found that, the QR has reduction rate of 26.38%, 28.62%, 27.67% and 
27.67% for the linear, linear iterative, proposed and traditional methods, respectively, and 
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correspondingly, the FWHMz and zε  slightly increase for all the four methods, as the SNR 

goes down from 30 dB to 10 dB. Nevertheless, the target quantitativeness, size and location 
recovered with the proposed method are in good agreement with those recovered with the 
traditional one, indicating that both the algorithms have nearly the same noise robustness and 
reconstruction fidelity for SNR≥10 dB. Additional simulations to assessing the noise 
robustness have also been made for models embedded with 0.4 mm and 1.2 mm inclusions to 
support a SNR threshold of 10 dB. 

For all the above simulative investigations, the iterative reconstructions (i.e., the linear 
iterative and the two nonlinear approaches) extremely outperforms the one-step linear one. In 
contrast to nonlinear reconstructions, the linear iterative method using a fixed searching 
direction to achieve economic computation with sacrificed accuracy. The proposed approach 
represents an extremely similar performance with the traditional nonlinear method, while 
considerably cuts down the computation time. 

4. Experimental validations 

 

Fig. 5. Schematic of the cdaLOT system. 

In this work, experimental measurements are provided by a condensed dip-angle LOT 
(abbreviated as cdaLOT) system as illustrated in Fig. 5 [33]. The system uses a confocal-
microscopy-based setup while remains the off-axis back-scattered light measurements to 
allow noncontact imaging with a nearly 200-μm spatial resolution over depth of ~2.5 mm. A 
focused laser beam is densely raster- or line- scanned over the sample surface, and the de-
scanned lights emerging from the sample at an increasing distance from 0 to ~3 mm relative 
to the focus are detected by a linear-array photomultiplier (PMT) or CCD to form the raw 
measurements. Comparing to the traditional LOT setup, the cdaLOT substitutes the 
achromatic doublet or microscope objective lens with a bi-telecentric lens (MVTC23200, 
Thorlabs) to provide a nearly constant incident angle assumed by general forward model 
during raster-scanning. The polarized and collimated light source is provided by a 632.8 nm 
He-Ne laser. The SDSs of the eight channels are configured as same as those in simulative 
investigations. Note that the SDS increment is equal to the proportion between the channel 
interval of the linear-array PMT and the optical magnification of system [1,33]. For all the 
experiments below, the measurement geometry and source-detector configuration are the 
same as that in Fig. 1. For all the following reconstructions, the mesh- and iteration- regarding 
parameters are the same as those in the simulation situation. 

4.1 Phantom experiment 

A semi-infinite phantom for LOT is fabricated from epoxy resin, with which titanium oxide 
particles (TiO2) and dye (QS675B) are mixed as the scatter and absorber, respectively. After 
careful calibration, the optical properties at 632.8nm is set to μa0 = 0.01mm−1, μs = 3mm−1, and 
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g = 0.9 to mimic those of human cervical tissues [34]. Vessel-mimic targets are parallelly 
embedded along X-axis at depths of 0.4mm and 0.9mm, with fixed cross-section area of 1 × 
1mm2 and fixed TAC of 5, i.e., 0/ 5a aμ μ = . It is noteworthy that, the center-to-center 

separation of the two targets is large enough to guarantee only one target is to be imaged in a 
single experiment. To simulate photon-migration in semi-infinite medium, computational 
domain adopted in reconstruction is extended along X-Y plane with a distance of 3 / tμ′  

where tμ′  is the reduced mean-free-path [35]. Figure 6(a) shows the reconstructed absorption 

images using the four schemes from left to right columns, respectively, with upper and lower 
rows showing the results for target depths of 0.4mm and 1mm, respectively. The 
corresponding Y- and Z- profiles along the white dashed lines in the images are plotted in the 
left and right columns, respectively, in Figs. 6(b) and 6(c). 

 

Fig. 6. Phantom experimental results. (a) Reconstructed aμ  images for target depths of 

0.4mm (upper row) and 1mm (lower row), with the four schemes from left to right columns, 

respectively. (b)-(c) Corresponding profiles of the reconstructed aμ  images along the white 

dashed lines marked in the above images for target depths of 0.4mm and 1mm, respectively. 

It can be seen from the upper row of Fig. 6(a) that, the target size and position for 0.4-mm 
scenario can be accurately reconstructed with the four schemes. Among them, the one-step 
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linear scheme renders the lowest QR as expected. Deviations of the reconstructed target shape 
might be caused by the fabrication error of the phantom, since it is hard to guarantee the 
optical uniformity for such a slim heterogeneity in the epoxy-resin-based medium. With 
increase of the target depth, the measurement SNR reduces, as well as the measurement 
sensitivity. As shown in Fig. 6 and Table 4, the 1-mm reconstructions show inferior 
performance, e.g., more noise can be found in the target region and background, and the edge 
of the target reconstructed by the linear method is smoothed and diffused seriously in X-Y 
view. These are common problems in imaging technique based on reflecting measurement 
[4,31]. Nevertheless, the nonlinear methods outperform the linear (iterative) methods. For the 
above reconstruction errors, the biased estimations to the optical properties of the background 
and the instability of the system also contribute to them. 

Table 4. Comparisons among the reconstructions for different target depths 

Method 

Depth = 0.4mm  Depth = 1mm 

QR 
(%) 

FWHMy 
(mm) 

FWHMz 
(mm) 

εz 
(%) 

 
QR 
(%) 

FWHMy 
(mm) 

FWHMz 
(mm) 

εz 
(%) 

Linear 13.29 1.54 1.45 9.30  24.14 1.50 1.65 16.28 
Linear 
iterative 

58.00 1.11 1.24 9.30  46.69 1.33 1.19 11.63 

Proposed 60.15 1.08 1.29 2.33  59.68 1.33 1.07 6.97 

Traditional 60.16 1.08 1.29 2.33  57.89 1.33 1.09 6.98 

4.2 In-vivo mouse experiment 

 

Fig. 7. Imagings of the murine cancerous region: (a) photograph and (b) cdaLOT raw images. 
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It has been reported for tumor development that, in addition to oncogene-induced cell 
proliferation, another attractive candidate for a cellular change necessary is angiogenesis— 
the induction of neovascularization [36]. All entity tumors including pancreatic are highly 
vascularized, and the activation of neovascularization appears to be occurring prior to overt 
tumor formation in a subset of the preneoplastic nodules. Since the hemoglobin in blood has a 
strong absorption effect in visible wavelength, the tumor at an early stage might be detected 
via functional optical imaging technique with a mesoscopic-scale resolution, e.g., LOT. 

A suspension of 5 × 105 PanCO2 murine pancreatic tumor cells was subcutaneously 
injected into the abdominal region of a 3-week-old BALB/C mouse, and the in-vivo imaging 
with LOT was performed 2 weeks later. All animal procedures were reviewed and approved 
by the subcommittee on research animal care at Tianjin Medical University Cancer Institute 
& Hospital, where these experiments were performed. 

 

Fig. 8. In-vivo experimental results. (a) Reconstructed  images sliced at z = 0.2mm, z = 
0.5mm, z = 0.71mm, z = 0.9mm, and x = 4.1mm, from left to right columns, respectively, with 
the four reconstruction schemes. (b) Corresponding Z-profiles along the white dashed lines 
marked in the above Y-Z slices. The red dashed line indicates z-position of the tumor centroid. 

The photograph of the tumor-bearing mouse is shown in Fig. 7(a), where the tumorous 
region in the murine abdomen is given a close-up description boxed with white dotted line in 
the right subplot. Superficial information can be found in the photo, such as skin texture, 
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ecchymosis-suspected regions (region #1), and sub-surface capillaries (region #2). The 
subcutaneous haemorrhage might be caused by soft tissue strain. Figure 7(b) shows the 
averaged cdaLOT raw images over 100 frames for eight SDSs. Pixels of LOT raw image are 
composed of the raw measurements collecting from a fixed channel in PMT. Actually, the 
raw image is the integral of X-Y slices from z = 0 to a SDS-corresponding value. To 
objectively evaluate the reconstructions, anatomy experiment was conducted afterward near 
the tumor region. Anatomy experiments show that, the pancreatic tumor has a central depth of 
~0.7mm and an area of ~4mm2. As shown in Fig. 7(b), in addition to the superficial 
information, the curve-shaped pancreatic tumor can be found in those of large SDS, indicated 
by white arrowheads. With the increase of SDS, the shadow of the tumor (indicated by yellow 
arrowhead) can be seen and the separation between them increases correspondingly. This is 
caused by twice strong attenuations to the incident and emerged light, respectively [1,4]. The 
lateral direction between the twice mutations is orthogonal to that of scanning, and the lateral 
displacement is equal to SDS. Although these raw images are qualitatively useful, surface 
features as well as the slight lateral displacement of each raw LOT depth image can 
complicate interpretation of the true depth of the observed features [1]. Therefore they need to 
be further processed via the image reconstruction/deconvolution procedures. 

Given that the murine skin is two-layer structured, i.e., 100μm-thickness epidermis with 
an optical property set of {μa0 = 0.5mm−1, μs0 = 52.26mm−1, g = 0.9} and semi-infinite dermis 
with {μa0 = 0.5mm−1, μs0 = 33.41mm−1, g = 0.9} [34,37]. In the forward modeling, target 
surface to be imaged within such a limited FOV in LOT is herein treated to be flat. The 
reconstructed images and corresponding Z-profiles using the four schemes are presented in 
Fig. 8. In Fig. 8(a), the reconstructed X-Y slices at z = 0.2mm, 0.5mm, 0.71mm, and 0.9mm 
are shown from the first to fourth columns, respectively, and Z-Y slices across the tumor 
region are shown in the last column. Figure 8(b) shows the corresponding Z-profiles along the 
white dashed lines marked in the Y-Z images, and the red dashed line indicates z-position of 
the tumor absorption centroid. It is seen from Fig. 8(a) that, the tumors can be clearly found 
(as encircled by black dashed lines) in the X-Y and Z-Y slices at z = 0.71mm and x = 4.1mm 
with the linear iterative, proposed and traditional reconstructions. The tumor size and location 
recovered by the three iterative schemes are nearly the same and in agreement with the result 
of anatomy experiment. However, the tumor imaged with the one-step linear scheme has an 
extremely low absorption contrast and blurred edge. Similar with the previous experimental 
results, linear iterative one provides a lower QR comparing to the proposed and traditional 
approaches. To further flatten the target surface, the mice abdominal region is slightly pressed 
with a high-transparence coverslip as shown in Fig. 7(a), leading to a compressed tumor in Z-
Y view. 
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5. Discussions and conclusions 

 

Fig. 9. Computation time per iteration VS. size of (J). 

In this paper, a practical nonlinear absorption reconstruction based on the recursive SVD 
inversion is proposed for LOT, where the recursions for calculating SVD components are 
derived based on an established scaled expression of sensitivity matrix. The computation 
complexity of solving the SVD-based linear inversion reduces from typical O(4NM2 + 22N3) 
or O(4NM2 + 8MN2 + 9N3) to O(2NM2 + MN2), with M N  being general occurrence in 

DOT/LOT. Time cost of iteratively updating ( )k
aδμ  using the proposed (Tprop) and traditional 

schemes (Ttrad) are compared in Fig. 9, for different size of sensitivity matrix J. On average, 

prop tradT / T  is merely 26.27%. The feasibility and availability of the proposed reconstruction 

strategy is borne out through numerical and experimental investigations with an established 
cdaLOT system. In contrast, linear iterative method shortens computation time at the cost of 
image quality, and might never be a reasonable choice in practice. 

To further enhance the proposed approach, rank degeneracy principle can be adopted to 
reduce the dimension of (singular) matrices in calculations [22, 23, 38]. In special, for the 
SVD-based linear inversion, this approach reduces to the truncated SVD (TVSD) 
regularization [22, 23, 38]. Furthermore, most prevalent accelerations, e.g., model-order 
reduction and parallel computing, etc., can be added. Last but not least, to accommodate the 
simultaneous perturbations of absorption and scattering, the scattering-dependent term needs 
to be added in Eq. (5) [17]. The voxelized scaling factor of averaged collision-number can be 
estimated as averaged photon-pathlength within the corresponding voxel divided by mean-
free-path. 
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Fig. 10. (a) Reconstructed aμ  images along y = 4.165mm with the proposed, traditional, and 

improved approaches using the rSVD and fSVD, respectively, for TAC = 2, SNR = 10dB, and 
a fixed target depth of 0.9 mm. (b) Corresponding Z-profiles along the white dashed lines 
marked in the above X-Z slices. 

Table 5. Comparisons among the reconstructions for different target depths. The 
numbers bracketed in Table 5 are the corresponding 1-iteration results. 

Method QR (%) FWHMy (mm) FWHMz (mm) εz (%) 

Trad + rSVD 33.78 (31.58) 1.16 (1.19) 1.24 (1.24) 27.65 (27.65) 
Trad + fSVD 32.45 (29.90) 1.16 (1.20) 1.46 (1.42) 12.14 (17.31) 

Proposed 52.18 (30.83) 1.02 (1.15) 1.10 (1.40) 6.98 (17.31) 

Traditional 52.18 (30.83) 1.02 (1.15) 1.10 (1.40) 6.98 (17.31) 

The traditional reconstruction can be accelerated with advanced SVD algorithms, e.g., the 
widely used randomized technique [39–41]. For the proof-of-concept survey, improved 
reconstructions using two randomized SVD methods, referred to as rSVD [40] and fSVD 
[41], respectively, are herein investigated to compare the proposed and traditional 
reconstructions, as shown in Fig. 10. The number of the retained singular values in rSVD and 
fSVD are set to 400 and 500, respectively, to keep almost the same computation time as the 
proposed method. It can be seen in Table 5 that, the traditional reconstructions with rSVD and 
fSVD have lower QR and larger zε . Actually, for these two approaches, iterative 

modification almost fails due to absence of the significant components in singular values and 
vectors of the original sensitivity matrix, since the randomized technique is just to seek a 
nearly optimal low-rank approximation to achieve high computational efficiency. As a result, 
enhancement by such approximation-based methods depends on accuracy required, and might 
not be applicable for the mesoscopic reconstruction. In contrast, for the proposed 
methodology, the acceleration is based on the physically reasonable scaling principle of the 
photon-migration model, and therefore the derived recursive formulation is mathematically 
rigorous. 
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Appendix A: derivation of scaled sensitivity 
Inserting Eq. (5) into the following limit form of the sensitivity definition 
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Inserting Eq. (5) into the following derivative form of the sensitivity definition 
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we have 
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Combining Eq. (A2) and Eq. (A4) leads to 
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